Math 521B
 Selected Response
 Item Bank

Which of the following equations has no solution?
(A) $-8 \sqrt{4+x}+5=-3$
(B) $2 \sqrt{x-5}-6=-2$
(C) $6+2 \sqrt{x-8}=4$
(D) $2-3 \sqrt{x+4}=-7$

Which of the following equations has no solution?
(A) $\sqrt{2 x+1}-9=-2$
(B) $-\sqrt{2 x+1}+9=-2$
(C) $\sqrt{2 x+1}+9=2$
(D) $9-\sqrt{2 x+1}=2$

Course: Math 521B Outcome: $\underline{\text { AN4 }}$ Level: 1 Item \#: $\underline{2015-61-A N 4-1}$
Identify the non-permissable values for the following ration expression:

$$
\frac{x-2}{x^{2}-5 x+6}
$$

(A) $x \neq 2,3$
(B) $x \neq 3$
(C) $x \neq 0,2,3$
(D) $x \neq-3,-2$

Course: Math 521B Outcome: $\underline{\text { AN4 }}$ Level: 1 Item \#: $\underline{2015-62-A N 4-1 ~}$
Identify the non-permissable values for the following ration expression:

$$
\frac{x-3}{2 x^{2}-6 x}
$$

(A) $\quad x \neq 0,-3$
(B) $x \neq 0,3$
(C) $x \neq 0$
(D) $x \neq 3$

Détermine le graphique qui correspond à la solution de l'équation suivante:

$$
\left|3(x-2)^{2}-3\right|=-3 x+9
$$

(A)

(B)

(C)

(D)

Détermine le graphique qui correspond à la solution de l'équation suivante:

$$
\left|x^{2}-2 x-3\right|=3 x-9
$$

(A)

(B)

(C)

(D)

Course: Math 521B Outcome: RF3 Level: 2 Item \#: 2015-69-RF3-2

À partir de ce graphique, détermine l'équation de la fonction quadratique de la form canonique.

(A) $y=\frac{1}{2}(x-1)^{2}+3$
(B) $y=2(x+1)^{2}+3$
(C) $y=\frac{1}{2}(x+1)^{2}+3$
(D) $y=2(x-1)^{2}+3$

Course: Math 521B Outcome: RF3 Level: $\underline{2}$ Item \#: $\underline{\text { 2015-68-RF3-2 }}$ a partir de ce graphique, determine l'equation de la fonction quadratique de la form canonique.

(A) $f(x)=-3(x-4)^{2}-2$
(B) $f(x)=-3(x+4)^{2}-2$
(C) $f(x)=-3(x-4)^{2}+2$
(D) $f(x)=3(x+4)^{2}-2$

Course: Math 521B Outcome: RF3 Level: $\underline{3}$ Item \#: $\underline{\text { 2015-66-RF3-3 }}$
A pelican dives from the top of a bridge towards the water to catch a salmon. The height, h in meters, of the pelican above the water, t seconds after it begins it's dive can be approximated by the function $h(t)=3 x^{2}-15 x+12$.

What is the height of the bird in relation to the bridge after 2 seconds?
(A) The pelican is below the water level.
(B) The pelican is in the air above the height of the bridge.
(C) The pelican is at the surface level of the water.
(D) The pelican is in the air below the height of the bridge but above the water.

Course: Math 521B Outcome: RF3 Level: $\underline{3}$ Item \#: $\underline{\text { 2015-65-RF3-3 }}$
A meatball is tossed upward from the stage in the cafeteria and falls to the ground. The approximate heigh, h in meters, of the meatball above the floor t seconds after being tossed is moedelled by the function $h(t)=-5 t^{2}+9 t+2$

What is the height of the meatball in relation to the cafeteria stage after 1 second?
(A) The meatball has hit the ground.
(B) The meatball is in the air below the height of the stage.
(C) The meatball is in the air above the stage.
(D) The meatball is in the air at the same height as the stage.

Math 521B	Outcome: RF	Level: 2	15

Fireworks launched from a platform are modelled by the quadratic $h(t)=-0.05 t^{2}+3 t+15$. What is the max height that the fireworks will reach?
(A) 15 m
(B) 60 m
(C) 345 m
(D) 845 m

Place the following quadratic function into vertex form.

$$
y=-4 x^{2}-8 x+2
$$

(A) $y=-4(x+1)^{2}+6$
(B) $y=-4(x-4)^{2}+66$
(C) $y=-4(x+1)^{2}+1$
(D) $y=-4(x-1)^{2}+6$

Solve the following system of equations:

$$
\begin{gathered}
y=2 x+2 \\
y=x^{2}+6 x+5
\end{gathered}
$$

(A) $x=-7$ or $x=-1$
(B) $(-3,-4)$ and $(-1,1)$
(C) $(-7,-12)$ and $(-1,1)$
(D) $x=-3$ or $x=-1$

Solve the following system of equations:

$$
\begin{gathered}
y=x+3 \\
y=x^{2}+4 x+3
\end{gathered}
$$

(A) No solution
(B) $(-3,0)$ and $(-2,1)$
(C) $x=0$ and $x=3$
(D) $(0,3)$ and $(-3,0)$

Which of the following inequalities would have the given solution:

$$
1 \leq x \leq 3
$$

(A) $x^{2}-4 x+3 \leq 0$
(B) $x^{2}-4 x+3 \geq 0$
(C) $x^{2}-4 x+3<0$
(D) $x^{2}-4 x+3>0$

Solve by number line:

$$
2 x^{2}-7 x+6 \geq 0
$$

(A)

(B)

©

(D)

Solve:

$$
-x^{2}-8 x-7<0
$$

(A) $-7<x<-1$
(B) $x<1$ or $x>7$
(C) $x>-1$ or $x>-7$
(D) $1<x<7$

Which of the following inequalities would have the given solution:

$$
x<2 \text { or } x>3
$$

(A) $-x^{2}+5 x-6>0$
(B) $-x^{2}+5 x-6 \leq 0$
(C) $-x^{2}+5 x-6 \geq 0$
(D) $-x^{2}+5 x-6<0$

Shown is a graph at $y=\frac{1}{f(x)}$. What is the x-intercept of the graph at $y=f(x)$?

(A) $x=4$
(B) $x=1$
(C) $x=-1$
(D) $x=0$

The graph of $y=\frac{1}{f(x)}$ is shown. Identify the graph at $y=f(x)$.
(A)

(B)

(C)

(D)

Given the point $(-3,4)$, determine the exact ratio for $\operatorname{Cos} \theta$.
(A) $\frac{-3}{\sqrt{7}}$
(B) $\frac{-3}{5}$
(C) $\frac{4}{5}$
(D) $\frac{4}{\sqrt{7}}$

Given $\operatorname{Sin} \theta=\frac{-2}{5}$ and θ is a quadrant III angle, determine the exact ratio for $\operatorname{Tan} \theta$.
(A) $\frac{-2}{\sqrt{21}}$
(B) $\frac{2}{\sqrt{29}}$
(C) $\frac{-2}{\sqrt{29}}$
(D) $\frac{2}{\sqrt{21}}$

Determine the exact ratio for $\operatorname{Sin} \theta$ when $\theta=300^{\circ}$.
(A) $\frac{-1}{2}$
(B) $\frac{1}{2}$
(C) $\frac{\sqrt{3}}{2}$
(D) $\frac{-\sqrt{3}}{2}$

Determine the exact ratio for $\operatorname{Tan} \theta$ when $\theta=135^{\circ}$.
(A) $\frac{1}{\sqrt{2}}$
(B) -1
(C) 1
(D) $\frac{-1}{\sqrt{2}}$

Math 521B
 Selected Response
 Item Bank
 Rationale

(A) $-8 \sqrt{4+x}+5=-3$
$=-$, not possible
(B) $2 \sqrt{x-5}-6=-2$
$=-$, not possible
(C) $6+2 \sqrt{x-8}=4$
(D) $2-3 \sqrt{x+4}=-7$

Correct Answer

$=-$, think no solution
(A) $\sqrt{2 x+1}-9=-2$
$=-$, so think it's not possible, didn't isolate radical
(B) $-\sqrt{2 x+1}+9=-2$
(C) $\sqrt{2 x+1}+9=2$

Correct Answer
(D) $9-\sqrt{2 x+1}=2$

Forgot to divide by the negative

Course: Math 521B Outcome: AN4 Level: 1 Item \#: 2015-61-AN4-1
Identify the non-permissable values for the following ration expression:

$$
\frac{x-2}{x^{2}-5 x+6}
$$

(A) $\quad x \neq 2,3$
(B) $\quad x \neq 3$

Correct Answer

They are reducing the rational expression before determing the non-permissable value
(C) $x \neq 0,2,3$

Students believe all rational expressions must have a nonpermissable value of x not equal 0 , because it is not possible to divide by zero.
(D) $x \neq-3,-2$

Students are forgetting to solve the quadractic by setting each factored binomial equal to zero.

Course: Math 521B Outcome: AN4 Level: 1 Item \#: 2015-62-AN4-1
Identify the non-permissable values for the following ration expression:

$$
\frac{x-3}{2 x^{2}-6 x}
$$

(A) $\quad x \neq 0,-3$
(B) $\quad x \neq 0,3$
(C) $x \neq 0$

Correct Answer
(D) $x \neq 3$

They forget to include the factored monomial expression " 2 x " on the bottom Détermine le graphique qui correspond à la solution de l'équation suivante:

$$
\left|3(x-2)^{2}-3\right|=-3 x+9
$$

Bonne réponse
(B)

mauvaise pente
(C)

mauvais sommet et mauvaise pente
(D)

mauvais emplacement du sommet

Détermine le graphique qui correspond à la solution de l'équation suivante:

$$
\left|x^{2}-2 x-3\right|=3 x-9
$$

(A)

(B)

Pente inversée

(C)

Sommet inversé

À partir de ce graphique, détermine l'équation de la fonction quadratique de la form canonique.

(A) $y=\frac{1}{2}(x-1)^{2}+3$

Erreur du signe de "p"
(B) $y=2(x+1)^{2}+3$

Erreur de calcul pendant la détermination de la valeur de "a"
(C) $y=\frac{1}{2}(x+1)^{2}+3$

Bonne réponse
(D) $y=2(x-1)^{2}+3$

Combinaison des deux erreurs.

Course: Math 521B Outcome: RF3 Level: $\underline{2}$ Item \#: 2015-68-RF3-2 a partir de ce graphique, determine l'equation de la fonction quadratique de la form canonique.

(A) $f(x)=-3(x-4)^{2}-2$

Parfois les eleves regardent rapidement le graphique, ils voient que la valeur de "x" est negatif, et ils oublient qu'il faut changer le sign quand ils ecrivent l'equation.
(B) $f(x)=-3(x+4)^{2}-2$

Correct Answer

Erreur +/- des valeurs de p et q.
(D) $f(x)=3(x+4)^{2}-2$

Erreur de transcription de signes (a)

Course: Math 521B Outcome: RF3 Level: $\underline{3}$ Item \#: $\underline{\text { 2015-66-RF3-3 }}$
A pelican dives from the top of a bridge towards the water to catch a salmon. The height, h in meters, of the pelican above the water, t seconds after it begins it's dive can be approximated by the function $h(t)=3 x^{2}-15 x+12$.

What is the height of the bird in relation to the bridge after 2 seconds?
(A) The pelican is below the water level.

Correct Answer
(B) The pelican is in the air above the height of the bridge.
(C) The pelican is at the surface level of the water.
(D) The pelican is in the air below the height of the bridge but above the water.

Course: Math 521B Outcome: RF3 Level: $\underline{3}$ Item \#: $\underline{\text { 2015-65-RF3-3 }}$
A meatball is tossed upward from the stage in the cafeteria and falls to the ground. The approximate heigh, h in meters, of the meatball above the floor t seconds after being tossed is moedelled by the function $h(t)=-5 t^{2}+9 t+2$

What is the height of the meatball in relation to the cafeteria stage after 1 second?
(A) The meatball has hit the ground.
(B) The meatball is in the air below the height of the stage.
(C) The meatball is in the air above the stage.

Correct Answer
(D) The meatball is in the air at the same height as the stage.
Course: Math 521B Outcome: RF4 Level: $\underline{2}$ Item \#: $\underline{\text { 2015-10-RF4-2 }}$

Fireworks launched from a platform are modelled by the quadratic $h(t)=-0.05 t^{2}+3 t+15$. What is the max height that the fireworks will reach?
(A) 15 m

Students sub in $\mathrm{t}=0$
(B) 60 m
(C) 345 m

Students use $\mathrm{x}=-\mathrm{b} / 2 \mathrm{a}$ and make a negative mistake
(D) 845 m

Correct Answer

Students don't multiply -900 by -0.05

Place the following quadratic function into vertex form.

$$
y=-4 x^{2}-8 x+2
$$

(A) $y=-4(x+1)^{2}+6$
(B) $y=-4(x-4)^{2}+66$
(C) $y=-4(x+1)^{2}+1$
(D) $y=-4(x-1)^{2}+6$

Correct Answer

Students don't divide out the -4 from the first 2 terms

Students miss mult the -1 by -4

Student miss dividing out the negative to get +2

Course: Math 521B Outcome: RF6 Level: $\underline{2}$ Item \#: 2015-37-RF6-2
Solve the following system of equations:

$$
\begin{gathered}
y=2 x+2 \\
y=x^{2}+6 x+5
\end{gathered}
$$

(A) $x=-7$ or $x=-1$

Does not perform the elimination or substitution method
properly and does not substitute the x-value inot an equation to solve y
(B) $(-3,-4)$ and $(-1,1)$
(C) $(-7,-12)$ and $(-1,1)$

Does not perform elimination or substitution properly.
(D) $x=-3$ or $x=-1$

Does not stubstitute x into equation to solve for y

Solve the following system of equations:

$$
\begin{gathered}
y=x+3 \\
y=x^{2}+4 x+3
\end{gathered}
$$

(A) No solution
thinks that when you factor to get $x=0$, there is no solution
(B) $(-3,0)$ and $(-2,1)$

Performed the algebra incorrectly. Moved the equation incorrectly.
(C) $x=0$ and $x=3$

Not substitute back to find y .
(D) $(0,3)$ and $(-3,0)$

Which of the following inequalities would have the given solution:

$$
1 \leq x \leq 3
$$

(A) $x^{2}-4 x+3 \leq 0$
(B) $x^{2}-4 x+3 \geq 0$
(C) $x^{2}-4 x+3<0$
(D) $x^{2}-4 x+3>0$

Correct Answer

Misinterpreted inequality
Misinterpreted inequality

Misinterpreted inequality

Solve by number line:

$$
2 x^{2}-7 x+6 \geq 0
$$

(A)

Misinterpreted inequality
(B)

(C)

(D)

Correct Answer

Same initial mistake in factoring and misinterpreted inequality

Solve:

$$
-x^{2}-8 x-7<0
$$

(A) $-7<x<-1$

Forgot to change the direction of inequality
(B) $x<1$ or $x>7$

Factored out the negative from only the first term and not the others.
(C) $x>-1$ or $x>-7$

Correct Answer
(D) $1<x<7$

Misinterpreted inequality with two mistakes above.

Which of the following inequalities would have the given solution:

$$
x<2 \text { or } x>3
$$

(A) $-x^{2}+5 x-6>0$

Misinterpret inequality
(B) $-x^{2}+5 x-6 \leq 0$
(C) $-x^{2}+5 x-6 \geq 0$
(D) $-x^{2}+5 x-6<0$

Misinterpret inequality

Misinterpret inequality

Correct Answer

Shown is a graph at $y=\frac{1}{f(x)}$. What is the x-intercept of the graph at $y=f(x)$?

(A) $x=4$
(B) $x=1$
(C) $x=-1$
(D) $x=0$

Correct Answer

Students use other points on the provided graph.

Students use other points on the provided graph.
many students use $x=0$ as on-permissable value regardless of original equation.

The graph of $y=\frac{1}{f(x)}$ is shown. Identify the graph at $y=f(x)$.

(A)

Negleted to use point ($0,-4$) and instead using point ($0,-1 / 4$)
(B)

Mistakenly considering a negative coefficient
(C)

Correct Answer
(D)

Given the point $(-3,4)$, determine the exact ratio for $\operatorname{Cos} \theta$.
(A) $\frac{-3}{\sqrt{7}}$

Found r value
(B) $\frac{-3}{5}$

Correct Answer
(C) $\frac{4}{5}$

Used wrong ratio
(D) $\frac{4}{\sqrt{7}}$

Found wrong r value and used wrong ratio

Given $\operatorname{Sin} \theta=\frac{-2}{5}$ and θ is a quadrant III angle, determine the exact ratio for $\operatorname{Tan} \theta$.
(A) $\frac{-2}{\sqrt{21}}$ Wrong sign
(B) $\frac{2}{\sqrt{29}}$

Kept -4
(C) $\frac{-2}{\sqrt{29}}$

Kept -4 and wrong sign
(D) $\frac{2}{\sqrt{21}}$

Correct Answer

Determine the exact ratio for $\operatorname{Sin} \theta$ when $\theta=300^{\circ}$.
(A) $\frac{-1}{2}$

Used wrong reference angle
(B) $\frac{1}{2}$

Wrong reference angle and wrong sign
(C) $\frac{\sqrt{3}}{2}$

Wrong sign
(D) $\frac{-\sqrt{3}}{2}$

Correct Answer

Determine the exact ratio for $\operatorname{Tan} \theta$ when $\theta=135^{\circ}$.
(A) $\frac{1}{\sqrt{2}}$

Wrong ratio and sign
(B) -1

Correct Answer
(C) 1

Wrong sign
(D) $\frac{-1}{\sqrt{2}}$

Wrong ratio

